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Abstract. We have found a manifestation of spin-orbit Berry phase in the conductance of a mesoscopic
loop with Rashba spin-orbit coupling placed in an external magnetic field perpendicular to the loop plane.
In detail, the transmission probabilities for a straight quantum wire and for a quantum loop made of the
same wire have been calculated and compared with each other. The difference between them has been
investigated and identified with a manifestation of spin-orbit Berry phase. The non-adiabaticity effects at
small radii of the loop have been found as well.

PACS. 73.23.Ad Ballistic transport – 05.60.Gg Quantum transport – 03.65.Vf Phases: geometric, dynamic
or topological

1 Introduction

The beauty of the topological Berry phase concept [1] in-
spires much theoretical and experimental activity aimed
at finding its manifestations in different areas of modern
physics [2]. Berry describes a quantal system in an eigen-
state, slowly transported around a closed path in the phase
space by varying parameters in its Hamiltonian. Accord-
ing to the adiabaticity theorem, if the Hamiltonian is re-
turned to its original form, the system will return to its
original state, apart from a phase factor. In addition to
the familiar dynamical phase, such a state can acquire a
geometrical, path-dependent phase factor, which is the re-
sult of the adiabatic variation of the external parameters.
This phase is known as Berry’s phase. (See also a fun-
damental generalization of this idea for a non-adiabatic
evolution [3].)

A possible candidate for the role of such an exter-
nal parameter in solid state physics is the external mag-
netic field B that interacts with the electron spin via the
Zeeman effect. This interaction is described by the follow-
ing Hamiltonian

HZ =
gµB

2
σ ·B, (1)

where σ = {σx, σy, σz} are the Pauli matrices, and µB,
g are Bohr magneton and g-factor respectively. When the
value of the magnetic field is constant and its direction fol-
lows adiabatically a closed trajectory, the spin wave func-
tion acquires the topological phase which is proportional
to the solid angle subtended in a space by the magnetic
field [1].
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The possibility to control the Berry phase by means of
the Zeeman effect is the central issue explored in the pio-
neering [4–6] and recent [7–13] papers. In particular, the
authors consider the adiabatic as well as non-adiabatic
motion of electrons through a mesoscopic ring in the pres-
ence of a static, inhomogeneous magnetic field. It is shown
that the Berry phase, accumulated by the spins of elec-
trons encircling the ring, leads to persistent equilibrium
charge and spin currents [4,5] or affects the conductance
of the ring [6,8,12] in a way similar to the Aharonov-Bohm
effect [14]. The latter point is of particular interest to the
topic. Indeed, since Aharonov-Bohm and Berry phases can
be varied individually, the interplay of the two phases
yields a rich variety of behavior. In particular, the am-
plitudes of the Aharonov-Bohm oscillations are strongly
affected by the Berry phase [8]. Moreover, the authors
of reference [8] show that these amplitudes can be com-
pletely suppressed at certain magic tilt angles of the ex-
ternal fields.

As was noted above, in order to observe the geometric
phase in an electronic system with spin, the application of
an orientationally inhomogeneous (e.g. radial) magnetic
field is necessary. However, the manner in which the mag-
netic field is varied in references [4–13] leads to rather
difficult experiments. Fortunately, the desired magnetic
field texture can be experimentally implemented via fab-
ricating the loop (or ring) from a material with spin-orbit
interactions of Rashba type [15]. Indeed, the Rashba op-
erator HR = α [σ × k]z can be rewritten for the loop of
radius R in the quasi-classical limit (kR � 1) as

HR = α (σx cosϕ + σy sin ϕ)
(
− i

R

∂

∂ϕ

)
. (2)
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(Here, α is the Rashba constant.) The effect of Rashba
spin-orbit coupling on the electron motion in the ring is
seen clearly from equation (2): namely, the electrons in
such a ring experience a radial built-in Zeeman-like mag-
netic field

Bin =
2αk

gµB
, (3)

where k is the characteristic wave vector. In other words,
the Rashba effect in the quasiclassical limit represents the
effective Zeeman-like magnetic field Bin. It is important
to emphasize, that this in-plane magnetic field does not
relate to the real external magnetic field Bext, but stems
from the internal properties of the substance (spin-orbit
interactions). Most important, however, the external Bext

and in-plane Bin components form the desired inhomoge-
neous magnetic field texture and in that way can provide
the geometric phase indications through interference pat-
terns in the conductance of the ring. This pretty idea is at-
tracting both theoretical [16–20] and experimental [21–25]
attention.

Let us consider the geometric phase acquired by the
wave function of a charged and spin-full particle as it
travels around the ring structure with Rashba spin-orbit
coupling. The system is placed in the external magnetic
field Bext, which is perpendicular to the ring plane. Firstly,
since the particle carries a charge, it picks up an Aharonov-
Bohm phase [14]

φAB = 2π
Φ

Φ0
, (4)

where Φ0 is the flux quantum, and Φ = πR2Bext is the
magnetic flux enclosed by the ring. Secondly, if the particle
carries a spin of 1/2 and its motion is adiabatic, then the
spin geometric phase, according to Berry’s definition [1],
reads

φB = π

(
1 − Bext√

B2
ext + B2

in

)
, (5)

and the full geometric phase is a sum of both φB and φAB .
Note that the adiabaticity requires comparatively large
values of Bin and Bext so that the electron spin precesses
few times within a cycle.

In reference [16], the authors established a one-particle
Hamiltonian for electrons moving on a 1D ring in the
presence of Rashba spin-orbit coupling and Zeeman split-
ting. Furthermore, the ballistic motion of electrons in
the absence of scattering and spin-flip processes has been
studied. In the spirit of the seminal paper by Büttiker
et al. [26], the transmission amplitude of the ring has
been derived and the conductance oscillations have been
investigated. We should note, however, that authors of
reference [16] used a non-Hermitian operator in the
Hamiltonian. Zhou et al. [17] noticed this fact and derived
a different (Hermitian) Hamiltonian operator. However, in
their Hamiltonian the spin-orbit coupling originates from
an electric field pointing in the radial direction and not in
the direction perpendicular to the plane of the ring. This
is not the correct Rashba term for inversion layers [27].
The procedure for obtaining the correct Hamiltonian has
been described in reference [28].

In spite of the mentioned shortcoming, reference [16]
has been the stimulus for the subsequent studies. In
particular, topological transitions in the ring conduc-
tance interference pattern subject to Berry’s phase have
been studied in [18]. It manifests itself in a steplike
conductance-magnetic field and conductance-gate voltage
characteristics. The transition takes place when the Berry
phase is dropped by an additional static magnetic field
Bext from odd of π to zero as it follows from equation (5).
The non-adiabatic spin-orbit geometric phase (of non-
Berry, but Aharonov-Anandan type [3]) in quantum rings
has been investigated in reference [19]. It has been shown
that such a phase φAA becomes the spin-orbit Berry phase
φB in the adiabatic limit. In order to analyse the structure
of the Aharonov-Bohm oscillations influenced by the spin-
orbit Berry phase, the Fourier spectra of conductance in a
two-dimensional ring have been calculated [20]. Note that
the method of Fourier analysis is the only suited one for
comparison of the theoretical results with the experimen-
tal data discussed below.

Another important feature of electron transport
through the ring with the Rashba coupling is that, even
in the absence of an external magnetic field, the topologi-
cal effects due to the Aharonov-Casher phase φAC [29] can
take place. (The discussion of relations between φAA, φAC,
and φB can be found in Sect. 4) There is a recent series of
articles [30–32] which deals with spin-dependent transmis-
sion through one-dimensional quantum rings subject to
the Aharonov-Casher phase. Moreover, ballistic electron
transport through chains of rings is studied. However, in
contrast to our approach, the Zeeman effect is neglected.

In pioneering observations of Berry phase [21,22], the
Aharonov-Bohm oscillations were studied in InAs two-
dimensional two-contact quantum rings with strong spin-
orbit interaction. The Fourier transforms of over 30 traces
of oscillations were averaged and a small splitting of the
main peak in the final Fourier spectrum was interpreted
as a possible manifestation of the spin Berry phase.

An attempt has been made to observe Berry phase in
quantum rings fabricated in a GaAs/AlGaAs heterostruc-
ture with a 2D hole system [23]. In such a setup, the inver-
sion asymmetry results from the GaAs zinc blende crystal
structure as well as from an electric field, which is perpen-
dicular to the 2D plane. Along with the main peak whose
frequency corresponds to the magnetic flux enclosed by
the ring, there are some extra peaks in the Fourier spectra
of the measured Aharonov-Bohm oscillations. A qualita-
tive comparison of the Fourier transforms with its simple
simulation provides a striking demonstration of the Berry
phase.

In contrast to earlier work, the authors of refer-
ences [24,25] furnish a novel configuration, in which the
ballistic ring forms one collimating contact with the tan-
gential current lead. Beside the absence of unknown asym-
metry in the arm length (that always gave an uncertainty
in a two-contact configuration) and additional spin rota-
tion at contacts, such a setup allows to let only one trans-
verse mode with a small longitudinal momentum enter
the ring through the contact. Such a setup allows direct
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Fig. 1. Geometry of the systems under consideration. (a)
Quantum loop of radius R. Note, that in contrast to refer-
ence [25] the electron beam does not split while it enters the
loop. (b) Quantum wire of the length 2πR which is made of
the same material as the quantum loop.

observations of the spin-orbit Berry phase in conductance
oscillations.

Finally, we would like to notice the recent paper [33],
where a manifestation of the geometric Aharonov-Casher
phase is found in the conductance of quantum rings fabri-
cated from HgTe/HgCdTe quantum wells. In these struc-
tures, the Aharonov-Bohm oscillations exhibit significant
changes when the Rashba coupling is varied by means of
the gate voltage. It is shown that these changes are due
to the geometric phase contribution to the electronic wave
function.

In present paper, we study theoretically the system
similar to [24,25]. There are, however, some important
differences. First, the possibility for electrons to bypass
the ring is assumed to be negligible in our system. There-
fore, the electron beam does not split while it enters or
leaves the ring. Thus, we study rather a quantum loop
(Fig. 1a) than a quantum ring connected to the tangen-
tial lead [24,25]. That is why, the Aharonov-Bohm effect
does not take place here. Second, we consider the modu-
lation of the potential profile in the loop region by means
of the gate voltage applied to the structure. Although the
realization of such a setup requires rather complicated de-
sign, the gated InAs rings have been fabricated [34]. And
finally, our system is purely one-dimensional, while this is
not the case in references [24,25]. However, so long as the
gate voltage can be applied, the upper size quantization
subbands can be easily depopulated so, that only a sin-
gle band is occupied. Therefore, the one-dimensionality of
the quantum loop is not a big problem anymore. Thus, the
collimating contacts provided in references [24,25] could
be a powerfull tool for topological phase investigations in
(quasi-)one-dimensional systems as one studied below.

The detailed description and solution of the model as
well as the discussion of results obtained is given in the
next sections.

2 Model

In order to find the transmission probability through
the quantum loop, we have to solve the corresponding
Schrödinger equation. To this end we divide the system
in three parts: input channel, the loop itself (which is
actually the arc of 2π-length) and output channel. The
Hamiltonians describing the propagation of electrons in
the input/output channels read

Hwire =

(
�
2

2m∗ k̂2
x + εZ iα k̂x

−iα k̂x
�
2

2m∗ k̂2
x − εZ

)
, (6)

whereas the propagation through the loop of radius R is
governed by the Hamiltonian

Hloop =
(

ε0 q̂2
ϕ + εZ + V α

R e−iϕ
(
q̂ϕ − 1

2

)
α
R eiϕ

(
q̂ϕ + 1

2

)
ε0 q̂2

ϕ − εZ + V

)
. (7)

Here k̂x = −i ∂
∂x − Φ

Φ0

1
R , q̂ϕ = −i ∂

∂ϕ − Φ
Φ0

are mo-
mentum and angular momentum operators respectively,
Φ = πR2Bz is the magnetic flux, Φ0 is the flux quantum,
ε0 = �

2/(2m∗R2) is the size confinement energy with the
effective electron mass m∗, εZ = g∗µBBz/2 is the Zee-
man energy, and V denotes the energy shift determined
by the gate voltage applied to the loop. (See Fig. 2 for the
examples of the profile studied below.)

We adopt the vector potential A to be tangential to
the direction of the current. Thus, in the loop we choose
A(x, y) = 1

2Bz (x j − y i), or, in cylindrical coordinates,
Aϕ(ϕ) = Φ/2πR, whereas the vector potential in the in-
put and output channels is determined by the continuity
condition at the junction point with the loop itself (x = 0,
y = −R); hence we have Ax = Φ/2πR.

We denote the wave functions for each part as Ψ±
loop(ϕ)

for the loop, Ψ±
in(x) and Ψ±

out(x) for input and output chan-
nels respectively. In order to find the wave function de-
scribing the whole system, we impose the boundary con-
ditions that warrant the continuity of the wave function
and its first derivative at the boundaries between the loop
and input/output channels

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Ψ+

in + Ψ−
in

) |x=0 =
(
Ψ+

loop + Ψ−
loop

)
|ϕ=−π/2,(

Ψ+
loop + Ψ−

loop

)
|ϕ=3π/2 =

(
Ψ+

out + Ψ−
out

) |x=0,(∇Ψ+
in + ∇Ψ−

in

) |x=0 =
(
∇Ψ+

loop + ∇Ψ−
loop

)
|ϕ=−π/2,(

∇Ψ+
loop + ∇Ψ−

loop

)
|ϕ=3π/2 =

(∇Ψ+
out + ∇Ψ−

out

) |x=0.

(8)
The operator ∇ is given by ∇ = 1

R
d

dϕ in the loop region,
and ∇ = d

dx in the input and output channels.
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Fig. 2. Two variants of the potential profile adopted in the solution. The bottoms of the bands can be lifted (a) or pulled down
(b) in the loop region by V.

In the next section, we find the electron eigen states
for the loop, the input, and the output channel, and solve
the system of equations (8). The solution gives us the
transmission and reflection amplitudes (and, as conse-
quence, the transmission/reflection probabilities) for each
spin mode.

3 Solution of the problem

Let us start from the input channel. The Hamiltonian (6)
acts in SU(2) spin space. The corresponding Schrödinger
equation allows two solutions

Ψ+
in(x) = e

iΦ
Φ0R x

⎛
⎝ cos γ+

(
eik+x + A+e−ik+x

)
−i sinγ+

(
eik+x − A+e−ik+x

)
⎞
⎠ , (9)

Ψ−
in(x) = e

iΦ
Φ0R x

⎛
⎝−i sinγ−

(
eik−x − A−e−ik−x

)
cos γ−

(
eik−x + A−e−ik−x

)
⎞
⎠ ,

(10)
where

tan γ± = − εZ

k± α
+

√
1 +

( εZ

k± α

)2

, (11)

and “±” are the spin indices.
Since the main contribution to the current is given

by the electrons at the Fermi level, we consider the eigen
states (9) and (10) at the fixed energy EF . Thus, the wave
vectors k± in (9) and (10) are the Fermi ones, and they
satisfy the dispersion relations

EF =
�

2k±2

2m∗ ±
√

α2k±2 + ε2
Z . (12)

These equations give us four solutions with respect to k.
Each solution corresponds to the Fermi wave vector with
given chirality and spin indices. The absolute values of
the Fermi wave vectors with a given spin index for the
left- and right-moving electrons are equal in the straight
channels.

The solutions (9) and (10) can be represented as sums
of incident and reflected waves. The coefficients A± are
the reflection amplitudes that have to be found impos-
ing the boundary conditions (8). For the output channel

the reflection amplitudes are assumed to be zero, and the
corresponding spinors read

Ψ+
out(x) =

(
D+ cos γ+ei(k++ Φ

Φ0R )x

−iD+ sin γ+ei(k++ Φ
Φ0R )x

)
, (13)

Ψ−
out(x) =

(
−iD− sinγ−ei(k−+ Φ

Φ0R )x

D− cos γ−ei(k−+ Φ
Φ0R )x

)
. (14)

Here D± are the transmission amplitudes.
The eigenfunctions of the Hamiltonian (7) are of the

form

Ψ+
loop(ϕ) = ei Φ

Φ0
ϕ

×
(

B+ cosα+ei(q+
R− 1

2 )ϕ + C+ cosβ+e−i( 1
2+q+

L )ϕ

B+ sin α+ei( 1
2+q+

R)ϕ − C+ sin β+e−i(q+
L− 1

2 )ϕ

)
,

(15)

Ψ−
loop(ϕ) = ei Φ

Φ0
ϕ

×
(
−B− sin α−ei(q−

R− 1
2 )ϕ + C− sinβ−e−i( 1

2+q−
L )ϕ

B− cosα−ei( 1
2+q−

R )ϕ + C− cosβ−e−i(q−
L − 1

2 )ϕ

)
,

(16)

where

tan α± =
ε0q

±
R − εZ

q±R α/R
+

√
1 +

(
εZ − ε0q

±
R

q±R α/R

)2

, (17)

tan β± = −ε0q
±
L + εZ

q±L α/R
+

√
1 +

(
εZ + ε0q

±
L

q±L α/R

)2

, (18)

and q±R,L are the Fermi angular momenta in the curved
part of the wire that are found from the conditions which
explicitly include the height of the barrier V

EF = V +
ε0

4
+ε0q

±
R

2±
√(

q±R α

R

)2

+
(
q±R ε0 − εZ

)2
, (19)

EF = V +
ε0

4
+ε0q

±
L

2±
√(

q±L α

R

)2

+
(
q±L ε0 + εZ

)2
. (20)
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It is interesting to note, that Fermi angular momenta for
electrons with opposite chiralities are not equal to each
other (q±L �= q±R). This effect stems from the particular
geometry of the system. Indeed, as soon as we assume
R → ∞ the relations (19) and (20) both become equal
to (12), where k±

R = k±
L . (The angular momenta must

be substituted by their linear analogue, i.e. k±
R = q±R/R,

k±
L = q±L /R.) Thus, the chiral asymmetry of Fermi angular

momenta is essentially of geometrical origin.

The imposing of the boundary conditions (8) on the
wave functions (9), (10), (13)–(16) gives us a system of
eight equations. That system definitely has an analytical
solution with respect to A±, B±, C± and D±. However,
the formulae for the amplitudes are extremely cumber-
some. Therefore, we do not adduce them here.

At this point it is pertinent to turn to the probability
current density calculations. (In the following we call the
probability current density just current density.) The con-
ventional formula for current density [35] is derived for the
Hamiltonian where the spin and orbital degrees of freedom
are separable. This is not the case in presence of spin-orbit
interactions. The correct formula for current density is a
bit more complicated and reads

j =
�

2m∗
(
Ψ1k̂

∗
xΨ∗

1 + Ψ∗
1 k̂xΨ1 + Ψ2k̂

∗
xΨ∗

2 + Ψ∗
2 k̂xΨ2

)

− iα

�
(Ψ1Ψ

∗
2 − Ψ∗

1 Ψ2) , (21)

where Ψ1 and Ψ2 are two components of a given spinor.
Using the general relation (21) one can easily find the

input, reflected and transmitted current densities for our
particular system. Note, that each current density is given
as a sum of its two spin components j = j++j−, and each
component can be found using the following formulas

j±in =
�

m∗

[
k± ± αm∗

�2
sin(2γ±)

]
, (22)

j±refl = − �

m∗ |A±|2
[
k± ± αm∗

�2
sin(2γ±)

]
, (23)

j±out =
�

m∗ |D±|2
[
k± ± αm∗

�2
sin(2γ±)

]
. (24)

4 Results and discussion

Now, we have everything ready to study the propagation
of the initial states given by (9) and (10) through the loop.
We define the transmission probability as

T =
jout

jin
, (25)

while the reflection one reads

R =
jrefl
jin

. (26)

The plots of the transmission probability as a function of
the external magnetic field are shown in Figures 3–5 (solid

lines) for different radii of the loop and barrier heights.
The additional dotted lines correspond to the transmis-
sion probabilities through the wire of length L = 2πR
separated from the input and output channels by barriers
of the same height as the loop is separated from its leads.
Therefore, it is only the curvature of the electron path that
differs for the solid and dashed lines. The dependencies in
Figures 3–5 exhibit the following characteristic features.

First, the transmission probability oscillates as a func-
tion of the external magnetic field Bz. The oscillating fac-
tors appear in the transmission probability, because of the
interference between reflected and incident waves at the
input and output of the loop. It is well-known, that the
transmission probability for the quantum particle prop-
agating across a single rectangular potential barrier of
length L contains the oscillating factor sin(Lk), where k
is the wave vector of the particle [35]. Our case is a bit
more complicated since we have two spin-split modes with
different wave vectors. Moreover, the absolute values of
the Fermi angular momenta for the left- and right-moving
electrons with the same spin index differ from each other.
Therefore, we have many oscillating factors with different
periods determined by q+

R , q+
L , q−R , q−L and their combi-

nations. These angular momenta depend on the external
magnetic field and, therefore, the oscillations T (Bz) occur.
We emphasize, that the fundamental origin of the oscilla-
tions depicted in Figures 3–5 is exactly the same as in the
simple single-mode model [35]. In other words, our system
is a kind of quantum interferometer with the characteristic
length 2πR.

Here, we would like to emphasize the principal differ-
ence between conventional interferometers based on the
geometry of a closed ring and Fabry-Perot-like system de-
scribed above. In both cases the interference pattern arises
as a superposition of the incident and reflected waves. In
the Aharonov-Bohm geometry reflected waves occur due
to the scattering of an incident wave on the contacts be-
tween upper/lower arms of the ring and conducting leads,
and the spin-orbit Berry phase manifestation is usually
found by comparison with the case of negligible spin-orbit
coupling, where only ordinary Aharonov-Bohm effect take
place. In the loop geometry, the incident wave is reflected
by the change of potential profile (see Fig. 2), and one
can track the Berry phase manifestation by comparison
with the case of a straight wire. The latter seems interest-
ing from the theoretical point of view, since the case of
R → ∞ is intractable in the model of a closed ring.

Second, there is a strong difference between trans-
mission probabilities for the loop and the straight wire
at certain intermediate values of the magnetic field (see
Figs. 3–5), while at higher values and at Bz = 0 both
curves just coincide. This is a particular manifestation of
the Berry phase that we explain in what follows. First of
all note, that the Berry phase is always zero in the straight
wire. In contrast to that simple case, an additional Berry
phase dependent factor sin φB occurs while an electron
wave function propagates through the loop. The Berry
phase (5) is negligible at Bext ≡ Bz � Bin and equal to π
at Bz = 0 (see Fig. 6). Therefore, the factor sinφB does
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Fig. 3. Transmission probabilities for the loop of radius R = 5 ×10−5 cm (solid lines) and corresponding straight wire of length
L = 2πR (dotted lines) versus external magnetic field. Magnetic field is given in Tesla (lower axis) as well as in units of B in

(upper axis). Each panel corresponds to different height of the barrier V : (a) V = 6.25 meV (V /EF ≈ 0.2); (b) V = 12.5 meV
(V /EF ≈ 0.4); (c) V = 18.75 meV (V /EF ≈ 0.6), and (d) V = 25 meV (V /EF ≈ 0.8). The other parameters are taken
relevant for InAs: α = 2 × 10−11 e m, m∗ = 0.033 me, g∗ = −12, EF = 30 meV.

not show up in these cases. At certain intermediate values
of Bz the difference between straight wire and loop geom-
etry is essential. In particular, at certain special values of
the external magnetic field the Berry phase is close to π/2
and the difference between transmission probabilities for
the loop and the straight wire is maximal. We find it nec-
essary to estimate such a magnetic field using the quasi-
classical formula (5) and assuming parameters relevant for
InAs: α = 2×10−11 eVm, g∗ = −12, k = 106 cm−1. Then,
the Berry phase value π/2 corresponds to Bz = |Bin|/

√
3

or, numerically, ∼3 T that is in good agreement with the
plots in Figure 3.

The influence of the barrier height on the oscillations
T (Bz) is shown in Figures 3–5. First of all, one can easily
see, that the transmission probability for the loop can also
exceed its characteristic value for the straight wire. Most
importantly, however, the critical value of the magnetic
fields (where the difference between transmission proba-
bilities for the loop and straight wire is maximal) is very
sensitive to the barrier height V . This is explained in what
follows.

It is obvious, that the potential profile changes the
Fermi momenta in the loop. Since the Berry phase explic-
itly depends on the characteristic wave vector of the parti-

cle (5), we have a possibility to change the Berry phase by
tuning the potential profile. In detail, Bin is proportional
to the wave vector of the particle, whereas the Fermi mo-
mentum for a given mode is larger for a deeper poten-
tial profile (i.e. for smaller or even negative V ). Thus, the
critical value of the external magnetic field Bz = Bin/

√
3

(which corresponds to φB = π/2) is shifted to the higher
values when the electron bands are pulled down by V .
Moreover, at certain negative values of V the Fermi wave
vectors are so large, that the critical value Bz = Bin/

√
3

exceeds 10 T, and, therefore, the point, where Berry phase
vanishes (Bz � Bin) leaves the reasonable range of mag-
netic fields depicted in Figure 5.

Finally, let us make some important comments on the
role of the loop radius in the effect studied. Indeed, fur-
ther questions arise when we compare the plots in Fig-
ures 3, 4. It is clearly seen, that the maximum of the dif-
ference between transmission probabilities of the loop and
the straight wire is shifted to higher magnetic fields. How-
ever, the Berry phase does not depend itself on the radius
of curvature. Nevertheless, we can explain the effect if we
remember, that the formula (5) (and the Berry concept
as well) is valid only for the adiabatic motion. The latter
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Fig. 4. Non-adiabatic regime �
2/(2m∗αR) � 1. The loop radius is taken ten times smaller than in the previous figure (i.e.

R = 5 × 10−6 cm). The other parameters for each panel are the same as for Figure 3.

means, that αm∗R/�
2 must be lager than one, so that

the electron spin precesses a few times while it is moving
through the loop. This is not the case depicted in Fig-
ures 4, 5, where αm∗R/�

2 ∼ 0.5 and the spin evolution is
definitely not adiabatic. Note, that our general approach
is valid for both adiabatic and non-adiabatic cases, be-
cause we use a direct solution of the Schrödinger equation.
Therefore, we are able to see the non-adiabaticity effects
in Figures 4, 5.

The phase difference for particles moving in opposite
directions with the same spin index reads

φtop = π
[
1 − (q+

L − q+
R)
]
,

= π
[
1 + (q−L − q−R)

]
. (27)

Here, the index “top” means “topological” since this phase
is zero in the straight wire. Note, that exactly this phase
difference is responsible for the amplitude modulation of
considered oscillations in the loop as compared with the
straight wire. The Fermi angular momenta q±L,R in equa-
tion (27) are obviously radius dependent [see Eqs. (19,
20)]. Thus, the geometric phase φtop is radius dependent
as well (in the non-adiabatic regime). As one can see from
Figure 6, the topological phase is larger than its adiabatic
approximation (i.e. Berry phase) for smaller radii of curva-
ture. Therefore, the characteristic magnetic fields, which

provide the maximal difference between the transmission
probabilities of the loop and straight wire, are shifted to
their higher values for small loops.

At the end of the discussion, we would like to clarify
the relation between the topological phase φtop defined
here and phases described in earlier papers (i.e. Berry,
Aharonov-Anandan, and Aharonov-Casher). As one can
see from Figure 6, the topological (27) and Berry (5)
phases give close results in the adiabatic regime (large R).
However, φtop is not Aharonov-Anandan phase φAA as one
may expect.

Indeed, the topological phase φtop is equal to π at
zero magnetic field for any radius of curvature. (Berry
phase is equal to π here as well.) In contrast, Aharonov-
Anandan and Aharonov-Casher phases are obviously
radius-dependent even at zero magnetic field [10,31] and
read

φAA = π

(
1 − 1√

1 + 4m∗2α2R2/�4

)
, (28)

φAC = π
(√

1 + 4m∗2α2R2/�4 − 1
)

. (29)

Thus, φtop, φB , φAA, and φAC are four different phases.
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Fig. 5. Transmission probabilities for the loop in the non-adiabatic regime (solid lines) and corresponding straight wire of length
L = 2πR (dotted lines) versus external magnetic field. The loop radius is R = 5× 10−6 cm. The other parameters are the same
as for Figure 3, but the height of the barrier is taken negative: (a) V = −6.25 meV; (b) V = −12.5 meV; (c) V = −18.75 meV;
and (d) V = −25 meV. Note, that the region of the magnetic fields, where Bz � B in (and where the difference between solid
and dotted lines vanishes) is shifted to very high values.
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Fig. 6. The topological phase as a function of the external
magnetic field at different loop radii: (a) adiabatic approxima-
tion (5), (b) R = 10−5 cm, (c) R = 5 × 10−6 cm, and (d)
R = 10−6 cm. Magnetic field is given in Tesla (lower axis) as
well as in units of B in (upper axis). The barrier height V is
taken equal to zero, and the other parameters are the same as
for Figure 3.

5 Conclusions

In conclusion, we have studied quantum transport in a
mesoscopic loop with Rashba coupling and Zeeman split-
ting. Here, we have found that the Berry phase gives a well
pronounced effect in a form of a deviation of the transmis-
sion probability from its value for the straight wire of the
same length L = 2πR at some specific external magnetic
fields. Moreover, we have investigated our system in the
non-adiabatic regime and found, that the characteristic
magnetic fields, which provide the strong deviation, are
shifted to higher values. And finally, these specific values
of the magnetic field are very sensitive to the potential
profile in the loop.
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